Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 332: 122101, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730110

RESUMO

AIMS: We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD). MAIN METHODS: We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor. KEY FINDINGS: WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group. The CRAL group showed RWG, fat regain, and hyperphagia with higher expression of angiogenic genes and reduced pericyte coverage of the endothelium in WAT on day 3 after CR compared to the CR group, indicating rapidly increased angiogenic activity after CR. Administration of TNP-470 suppressed RWG, fat regain, and hyperphagia only after CR compared to the CRAL group. Changes in circulating leptin levels and hypothalamic neuropeptide gene expression were correlated with changes in weight and fat mass, suggesting that TNP-470 suppressed hyperphagia independently of the hypothalamic melanocortin system. Additionally, TNP-470 increased gene expression related to thermogenesis, fuel utilization, and browning in brown adipose tissue (BAT) and WAT, indicating TNP-470-induced increase in thermogenesis. SIGNIFICANCE: Modulation of the WAT vasculature attenuates RWG after CR by suppressing hyperphagia and increasing BAT thermogenesis and WAT browning.

2.
J Lipid Res ; 64(6): 100387, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201659

RESUMO

Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.


Assuntos
Antineoplásicos , Caquexia , Camundongos , Animais , Caquexia/induzido quimicamente , Citarabina/farmacologia , Anorexia/etiologia , Intestino Delgado/metabolismo , Triglicerídeos , Lipídeos
3.
Ann Hematol ; 101(12): 2759-2769, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36136099

RESUMO

Despite widespread concern about energy imbalance due to tumor and chemotherapy-related side effects, little is known about detailed variations in energy input, metabolic rate, and physical activity. This study explored changes in energy balance components and serum biomarkers of patients with hematologic malignancies undergoing chemotherapy. Our prospective study included 40 patients with hematologic malignancies hospitalized for chemotherapy. We measured energy balance components, physical function, and serum biomarkers at baseline and weekly after chemotherapy for 3 weeks. Significant weight loss, representing negative energy balance, occurred at 2 (p = 0.002) and 3 weeks (p < 0.001) post-chemotherapy. Statistically reduced oral intake was observed at 3 weeks post-chemotherapy (p = 0.040), and resting energy expenditure statistically decreased according to Harris-Benedict equation, but not to Penn State University equation. Physical function according to DEMMI score decreased significantly at 3 weeks post-chemotherapy (p = 0.002). Serum biomarker analysis demonstrated significant changes in albumin, total protein, CXCL13, and GDF15, with exception of leptin. Although conventional serum biomarkers (total protein and albumin) did not reach pathological states despite their statistical differences, subgroup analysis showed CXCL13 in weight loss group and GDF15 in reduced oral intake group were significantly changed. Over half of patients (65.0%, n = 26) suffered from energy imbalance associated with weight loss and reduced oral intake during chemotherapy. Serial laboratory results suggested that novel biomarkers (CXCL13, GDF15) could be correlated with cachexic state and reduced food intake. Monitoring clinical and serum biomarkers associated with energy balance together can help identify needs for nutritional support in patients with hematologic malignancies undergoing chemotherapy.


Assuntos
Metabolismo Energético , Neoplasias Hematológicas , Humanos , Estudos Prospectivos , Caquexia , Neoplasias Hematológicas/tratamento farmacológico , Biomarcadores , Albuminas , Ingestão de Energia
4.
Korean J Physiol Pharmacol ; 25(4): 355-363, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187952

RESUMO

Dynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via ß-adrenergic receptors (ß-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each ß-AR subtype in the regulation of ATBF in mice. We monitored the changes in visceral epididymal ATBF (VAT BF), induced by local infusion of dobutamine, salbutamol, and CL316,243 (a selective ß1-, ß2-, and ß3-AR agonist, respectively) into VAT of lean CD-1 mice and global adipose triglyceride lipase (ATGL) knockout (KO) mice, using laser Doppler flowmetry. Administration of CL316,243, known to promote lipolysis in adipocytes, significantly increased VAT BF of CD-1 mice to a greater extent compared to that of the vehicle, whereas administration of dobutamine or salbutamol did not produce significant differences in VAT BF. The increase in VAT BF induced by ß3-AR stimulation disappeared in ATGL KO mice as opposed to their wild-type (WT) littermates, implying a role of ATGL-mediated lipolysis in the regulation of VAT BF. Different vascular reactivities occurred despite no significant differences in vessel density and adiposity between the groups. Additionally, the expression levels of the angiogenesis-related genes were significantly higher in VAT of ATGL KO mice than in that of WT, implicating an association of ATBF responsiveness with angiogenic activity in VAT. Our findings suggest a potential role of ß3-AR signaling in the regulation of VAT BF via ATGL-mediated lipolysis in mice.

5.
J Biol Chem ; 295(9): 2590-2600, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919097

RESUMO

The N-degron pathway, formerly the N-end rule pathway, is a protein degradation process that determines the half-life of proteins based on their N-terminal residues. In contrast to the well-established in vivo studies over decades, in vitro studies of this pathway, including biochemical characterization and high-resolution structures, are relatively limited. In this study, we have developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B, a key marker protein of autophagy, to tag the N terminus of the proteins involved in the N-degron pathway, which enables high yield of homogeneous target proteins with variable N-terminal residues for diverse biochemical studies including enzymatic and binding assays and substrate identification. Intriguingly, crystallization showed a markedly enhanced probability, even for the N-degron complexes. To validate our results, we determined the structures of select proteins in the N-degron pathway and compared them with the Protein Data Bank-deposited proteins. Furthermore, several biochemical applications of this technique were introduced. Therefore, this technique can be used as a general tool for the in vitro study of the N-degron pathway.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Proteólise , Sequência de Aminoácidos , Humanos , Redes e Vias Metabólicas , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/química
6.
Int Immunopharmacol ; 79: 106093, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863919

RESUMO

Clinical studies demonstrate alterations to immune measures in psychosis that can vary with illness stage and severity. For example, recent data show that changes to the JAK-STAT1 transcriptional signature, characteristic of an "M1" proinflammatory monocyte and macrophages phenotype, are related to illness duration. While antipsychotics have demonstrated immunomodulatory properties, their effects on this important immune signaling pathway are unknown. The primary aims of this study were to determine the effects of risperidone, a commonly prescribed antipsychotic drug, on the JAK-STAT1 transcriptional signature. Selected measures of JAK-STAT1 signature gene expression in peripheral blood mononuclear cells (PBMCs) from a clinical sample with psychosis were compared to examine differences induced by risperidone treatment. Additionally, the direct effects of risperidone on the JAK-STAT1 signature were investigated using a THP-1 human monocyte and macrophage cell model. Comparisons within the clinical sample demonstrated that the JAK-STAT1 signature was elevated in PBMCs from participants treated with risperidone who had a longer illness duration compared to untreated participants and those who were risperidone treated but had a shorter illness duration. Results of the in-vitro experiments showed a consistent potentiating effect of risperidone on expression of JAK-STAT1 signature genes in activated monocytes and monocyte-derived macrophages. Collectively these data indicate that risperidone may skew myeloid cells to a more proinflammatory phenotype, potentially contributing to increases in expression of JAK-STAT1 signature genes in participants with a longer illness duration.


Assuntos
Antipsicóticos/uso terapêutico , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Transtornos Psicóticos/tratamento farmacológico , Risperidona/uso terapêutico , Adulto , Citocinas/metabolismo , Feminino , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células THP-1 , Células Th1/imunologia , Transcriptoma , Adulto Jovem
7.
Noncoding RNA ; 4(4)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567388

RESUMO

Psychosis is associated with chronic immune dysregulation. Many long non-coding RNAs (lncRNAs) display abnormal expression during activation of immune responses, and play a role in heterochromatic regulation of gene promoters. We have measured lncRNAs MEG3, PINT and GAS5, selected for their previously described association with heterochromatin. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples collected from 86 participants with a diagnosis of psychosis and 44 control participants. Expression was assessed in relation to diagnosis, illness acuity status, and treatment with antipsychotic medication. We observed diagnostic differences with MEG3, PINT and GAS5, and symptom acuity effect with MEG3 and GAS5. Medication effects were evident in those currently on treatment with antipsychotics when compared to drug-naïve participants. We observed that clinical diagnosis and symptom acuity predict selected lncRNA expression. Particular noteworthy is the differential expression of MEG3 in drug naïve participants compared to those treated with risperidone. Additionally, an in vitro cell model using M2tol macrophages was used to test the effects of the antipsychotic drug risperidone on the expression of these lncRNAs using quantitative real-time PCR (qRT-PCR). Significant but differential effects of risperidone were observed in M2tol macrophages indicating a clear ability of antipsychotic medications to modify lncRNA expression.

8.
J Mol Biol ; 430(17): 2843-2856, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29870726

RESUMO

Conventional ubiquitylation occurs through an ATP-dependent three-enzyme cascade (E1, E2, and E3) that mediates the covalent conjugation of the C-terminus of ubiquitin to a lysine on the substrate. SdeA, which belongs to the SidE effector family of Legionella pneumophila, can transfer ubiquitin to endoplasmic reticulum-associated Rab-family GTPases in a manner independent of E1 and E2 enzymes. The novel ubiquitin-modifying enzyme SdeA utilizes NAD+ as a cofactor to attach ubiquitin to a serine residue of the substrate. Here, to elucidate the coupled enzymatic reaction of NAD+ hydrolysis and ADP-ribosylation of ubiquitin in SdeA, we characterized the mono-ADP-ribosyltransferase domain of SdeA and show that it consists of two sub-domains termed mART-N and mART-C. The crystal structure of the mART-C domain of SdeA was also determined in free form and in complex with NAD+ at high resolution. Furthermore, the spatial orientations of the N-terminal deubiquitylase, phosphodiesterase, mono-ADP-ribosyltransferase, and C-terminal coiled-coil domains within the 180-kDa full-length SdeA were determined. These results provide insight into the unusual ubiquitylation mechanism of SdeA and expand our knowledge on the structure-function of mono-ADP-ribosyltransferases.


Assuntos
Legionella pneumophila/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteínas de Bactérias , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...